Ammonia Slip – Measurement vs. Calculation

Justin Paauw & Mark Showalter Project Engineers 9/11/24

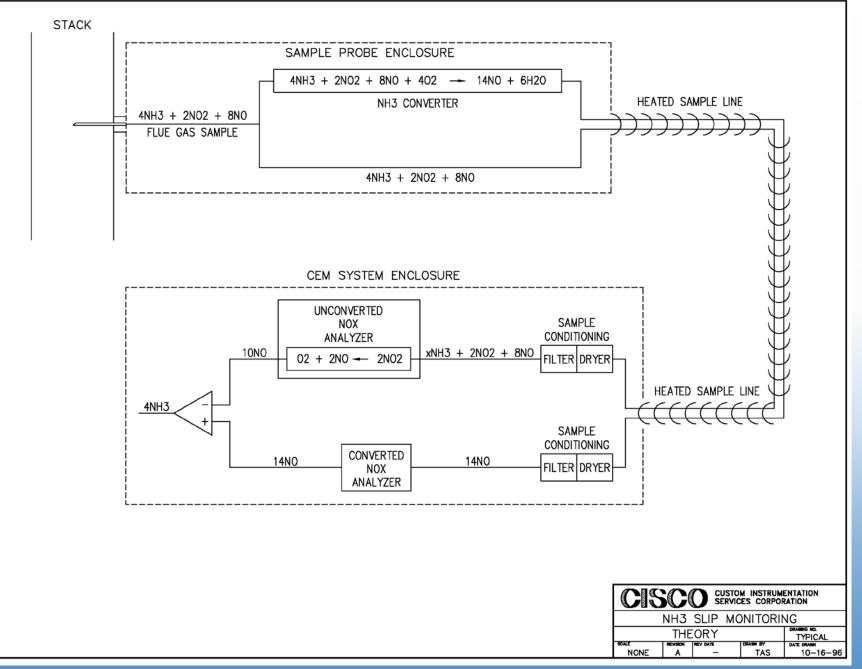
Ammonia Measurement Difficulties

- Ammonia (NH₃) is difficult to measure due to its solubility and reactivity with coexisting water and gases in flue gas.
- Because it is so soluble, sample cannot be dried prior to analysis.
- Permitted limits typically are on a dry basis.

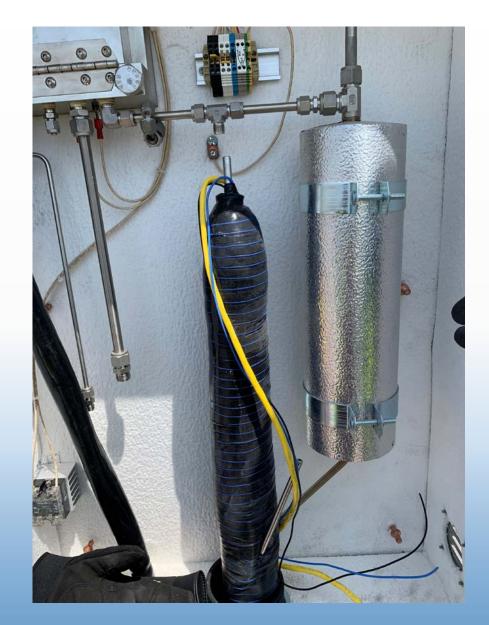
Ammonia Reactions

- NH₃ reacts with CO₂, NO₂, and SO₂ to form ammonia salts as temperature drops. These are all present in flue gas.
- Ammonia salts will foul sample systems.
 - CiSCO uses NH₃ scrubbers to prevent ammonia salts from fouling analyzers.
- Transporting NH₃ sample therefore is not advisable.

NH₃ Reporting Methods


- CiSCO uses two methods to successfully report NH₃ slip on a continuous basis for compliance purposes:
 - Determination
 - Calculation
- Another option exists:
 - Tunable Diode Laser (TDL)

Determination Method


- Also known as the Differential NO_X method (Δ NO_X)
- Process:
 - Two NO_X analyzers
 - Two sample streams from single sample point
 - One sample with NH_3 slip converted to NO_X
 - NH₃ slip is determined from the difference between the two measurements.

CISCO

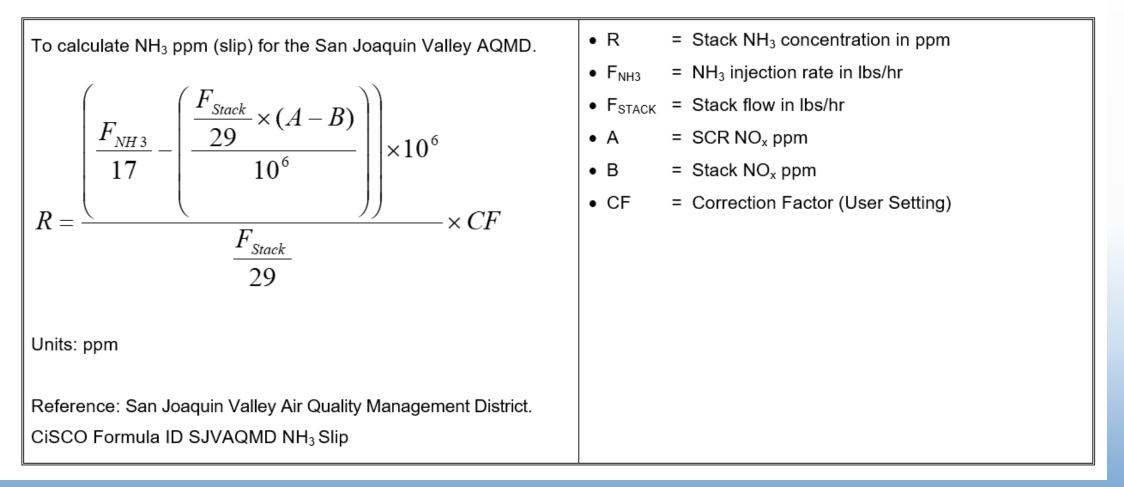
Determination Method

- Up-front cost approximately \$70k to add the required analyzer and sample handling equipment and material.
 - Does not include the stack NO_X analyzer and associated sample handling system.
- Calibrate with NO gas similar to NO_X analyzer
- Annual replacement of the NH₃ converter, approximately \$2k

Determination Method

- Consideration should be given to the range of the converted NO_X sample analyzer.
- The range needs to be high enough to capture the NO_X in addition to the converted NH_3 .
- The range should not be too high, which would prevent calibration using the Stack NO_X calibration gas.
 - Example:

Stack NO_X analyzer range 0-10 PPM NH_3 (NO_X) analyzer range 0-16 PPM



Calculation Method

- NH_3 slip = NH_3 injected NH_3 consumed
- NH₃ consumed = NO_X @ SCR inlet NO_X @ stack
- Requires a sample point to measure NO_X at the inlet of the SCR

*NH*³ Slip ppmvd (San Joaquin Valley Air Quality Management District)

Calculation Method

- Does not typically require certification
 - One exception: Pennsylvania
- With the addition of a correction factor, the CEMS value is corrected to match the source test value
 - Correction can be significant
 - Correction value is based on tested operating conditions

Calculation Method

- Up-front cost approximately \$70k to add the required analyzer and sample handling equipment and material.
- SCR Inlet NO_X analyzer can be used to control NH₃ injection as well (not done in the CEMS).
- There are many CiSCO systems using this method.
 - Required in some areas
- Various agencies have their own formula.

Alternative Option – In Situ TDL

- Approximately \$70k cost for the analyzer itself
- Performs NH₃ measurement across the stack using a laser
- Measurement on a wet basis
 - Analyzer can also measure H₂O to allow correction to dry basis if required for reporting.

